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Towards non-trivial scalar theories in d 3 4 space-time 
dimensions 
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€mperial College of Science and Technology, Blackett Laboratory, Prince Consort Road, 
London SW7 2BZ, UK 

Received 6 December 1982, in final form 1 February 1983 

Abstract. We show, in the large-N limit, how non-canonicd quantisation of an O ( N ) -  
invariant (pseudo) free scalar theory in d 3 4 dimensions can give non-trivial behaviour. 
Implications for recent results on the triviality of canonical scalar theories in d 3 4 
dimensions are discussed. 

1. Introduction 

It has recently been shown (Aizenmann 1981, Frohlich 1982) that a A(p4  theory of a 
single scalar field is trivial in d s 4 space-time dimensions, and almost certainly trivial 
in d = 4 dimensions, when quantised canonically. 

In response to this, Klauder (1981a, b) has argued that it is possible for a scale- 
covariant non-canonical quantisation of the same theory to render it non-trivial, since 
the bounds that enforce triviality of canonical scalar theories are weakened in scale- 
covariant quantisation. The basic idea (see Klauder 1979 and references therein) is 
that a A(p4 self-interaction provides a discontinuous perturbation for a conventionally 
non-superrenormalisable theoryt. On switching off the (p4 self-interaction, for such 
a theory in d 2 4  dimensions, we recover the so called ‘pseudofree’ theory. If this 
pseudofree theory is non-trivial the A(p4 theory built upon it will be non-trivial. 

From this viewpoint the problem of demonstrating the existence of non-trivial 
scalar theories in d s 4 dimensions reduces to the problem of demonstrating the 
existence of a non-trivial pseudofree scalar theory in these dimensions. 

We have a more modest aim. The numerical work of Klauder (1981a, b) has made 
it plausible that non-trivial theories exist in d 2 4 dimensions. The difficulty is to 
understand, in an analytic way, how a non-trivial pseudofree theory can arise. 

In this paper we examine the large-N limit of an O(N)-invariant pseudofree theory 
for non-triviality in d S 4  dimensions. We have already seen (Ebbutt and Rivers 
1982c) that, in general, the large-N pseudofree theory is free. We are concerned with 
exceptions to this general rule. We shall argue that, if non-trivial scalar theories do 
exist in d s 4 dimensions, then the large-N non-trivial pseudofree theories (compatible 
with Klauder 1981a) provide a good basis for our understanding of them. 

This paper is organised as follows. The next section reviews Klauder’s approach. 
More recapitulation takes place in the following section where we rederive the effective 

+ The case of d = 4 dimensions is seen as the boundary dimension of non-renormalisability, rather than of 
renormalisability. 
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potential Y(p) for the large-N limit of the O(N)-invariant scalar pseudofree theory 
first given by Ebbutt and Rivers (1982~) .  In the sections following we analyse V to 
see under what conditions the large-N theory becomes non-trivial. Having established 
non-triviality, we then revert to the effective action to provide a dynamical description 
of the self-interaction. The final section is a summary and analysis of our results. 

2. Non-canonical scale-covariant quantisation 

The path-integral formalism provides the simplest way to understand how discon- 
tinuous perturbations arise. The assumption (Klauder 1979) is that those theories 
that would be conventionally classified as non-superrenormalisable are not permitted 
the full range of field configuration histories available to a free field. That is, a partial 
‘hard-core’ has to be accommodated, via a change in the functional measure. 

These arguments are supported by 
(i) analogies with singular potentials in quantum mechanics; 
(ii) analogies with noise theory; 
(iii) explicit models like the independent-value and ultra-local models which, 

although dynamically uninteresting, are technically non-trivial 
(see Klauder (1978) for a non-technical summary of these approaches). 

Measures in path integrals cannot be changed at will. The only alternatives to the 
orthodox translation-invariant measures (implied by, and implying, the canonical 
commutation relations) are scale-covariant measures (implied by, and implying, affine 
commutation relations). 

Thus, we are led to consider the Euclidean pseudofree theory for a single scalar 
field Q with generating functionalt (dr =dddx) 

where 9’[cp] is a scale-covariant measure satisfying 

W A Q  1 = F[A19’[Q 1 ( A ( x )  > 0 Vx).  (2.2) 

In terms of the translation-invariant measure 9[cp], satisfying 

N Q + A l = ~ a [ Q l  for arbitrary A ( x )  (2.3) 

we can formally express 9’[cp] as 

Different values of p correspond to different ways of quantising the theory. 
We should not expect Z’ [ j ]  of (2.1) to describe a non-triuiaf pseudofree theory 

for each value of p. In the precontinuous lattice formulation of (2.1) discussed by 

+ We stress that we always interpret a pseudofree theory as a limit of a self-interacting non-superrenormalis- 
able theory as the interaction is switched off, and not as a free theory quantised in a peculiar way. 
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Klauder (1981a, b), the non-triviality of the pseudofree theory is equated to hyperscal- 
ing conservation. In order that the appropriate critical index be identically zero, it is 
argued that has to be tuned to a unique value at the critical analogue temperature 
of the lattice theory. Otherwise hyperscaling violation occurs and we have a trivial 
theory. 

In the absence of direct numerical integration we are obliged to rely on the 
uncertainties of PadC-like manipulations of high-temperature series. Qualitatively, 
to get a non-trivial pseudofree theory in d = 4  dimensions we seem to need a value 
of p compatible with zero (Klauder 1981a, b). However, it is difficult to see what is 
happening in numerical calculations of this kind. In particular, the nature of the Q-Q 

forse, that springs into existence when p is carefully tuned, is unclear. 
In the remainder of this paper we shall show how, and why, an analytic approxima- 

tion to 2‘ gives rise to unique values of p for non-trivial pseudofree theories. 

3. The large-N limit of the O(N) pseudofree theory 

In practice we can only perform Gaussian integration and, as it stands after the 
insertion of (2.4), Z ‘ [ j ]  does not lend itself naturally to expansion about a Gaussian. 
In order to get a tractable analytic theory it is necessary to generalise the pseudofree 
theory given above to an O(N)-invariant theory with N fields pi, with generating 
functional 

Z’[j]= I 9’[cp]exp(-h-’ Idx[i(Vcp)Z+fm&Z-j *VI). 

9 ’ [ c p I = n 9 [ ~ i I e x p (  1 - b S ( O )  I dx 1n(cp(x)2/N)). (3.2) 

(3.1) 

The measure 9’[cp] is invariant under global O(N)  transformations cp + Rcp and 

It follows that 9’[cp] can be expressed as (the generalisation of (2.5)) 
covariant under scale transformations cp (x) + A(x)(Rcp)(x), A(x) > 0. 

N 

We expect the dominant regions of integration in (3.1) to come from cp(x)’ = O(N).  
To make this more explicit we rewrite Z ’ [ j ]  as 

z’[jl= I f i g [ Q i 1 9 b 1 [ ~ ( q 2 - ~ p ) 1  1 

+%NJ’drap+ifiNpS(O)( dxlnp)].  (3.4) 

ZUI = J ~ ~ [ P P ~ U I  e x p ( - h - ’ ~ % b ,  x , i ~  

Defining x = mi + ia and integrating over the vi fields gives 

(3.5) 
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where 

+$hpS(O)I  dxlnp(x)+$hTrln(-V2+X) (3.6) 

Since the individual terms in % are all expected to be 0 ( 1 )  we see from (3.5) that 
the 1 / N  expansion for Z' (or, more appropriately, for the effective action r) is obtained 
by a saddle-point development of the path integral. 

We have learnt (Ebbutt and Rivers 1982a) that the 1 / N  expansion uniquely 
accommodates the hard-core effects of the change of measure in an additive way. To 
leading order we need perform no integrations. Let the single extremum of % be at 
P = ~ ~ [ j l ,  x = xo[iI, whence 

where 

c-vf +xo(x, [il))vo(x, Eil) =i(x). 

Then, for large N 

To the same order the semiclassical fields @ are 

In consequence the effective action I?[@] is 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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From (3.8), (3.9) and (3.10) we see that there is a simpler way to express r[@]. 
If we define r[@, x, p1 by 

r[@, x, p1= i I dx[+ (x )(-c + x (x ))G (x ) - Np (x )(x (x)  - mi)]  

+ihN@S(O) 5 dx lnp(x)+$hN Trln(-V2+X), 

then T[@] of (3.15) is given by 

r[ai 5 r[@, xo[ai9 po[aii 
where ,yo[@], pO[@]  are determined by 

(3.16) 

(3.17) 

(3.18) 

This follows from the observation that x o [ j ] ,  p O [ j ]  depend on j only through c p o [ j ]  = b. 
Rather than work with the effective clction I' it is sufficient for the moment to 

restrict ourselves to an analysis of the effective potential V(cp), obtained from r[@] 
on taking @(x) to have the space-time constant value cp as 

r[cpi=wcp)([dx). (3.19) 

Again to leading order, we define 

V ( 9 ,  x, p )  = ixcp2 - iNp(x -mi) + ihNPS (0) In p + ihN dk ln(k2 +x) 

(where bk = ( 2 ~ ) - ~  ddk). It follows that 

(3.20) 

Wcp) = wcp, x 0 ( c p Z ) ,  Po(cp2)) (3.21) 

where 

x o ( c p 2 )  = mi+PhS(0) /p0(cp2)  (3.22) 

PO(V') = q2/N + hG(Xo(cp2)) (3.23) 

with 

G(X) = J d k ( k 2 + X ) - ' .  (3.24) 

In Ebbutt and Rivers (1982~)  we examined the properties of V(cp) in the vicinity 
of cpz = 0 for general values of p. Our aim was to demonstrate that the addition of 
the term ihNpS(0) ln((p*/N) to the classical potential via the change of measure (2.5) 
did not destabilise the effective potential at q 2 = 0 .  In general we found that V ( q )  
was, after renormalisation, that of a free theory. In that paper we had assumed that 
it was the non-leading terms of the 1/N expansion that provided the non-trivial 
interactions. We no longer have this belief. In the remaining sections we examine 
the exceptions to the general case, not discussed in Ebbutt and Rivers (1982c), as 
candidates for non-trivial theories. 

Finally, we note that, to leading order, the Euclidean and Minkowski effective 
potentials are identical. Thus, on the one hand we can interpret the effective potential 
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V ( v )  as a vacuum energy density while, on the other hand, we can compare our 
results with the Euclidean statistical mechanics of Klauder (1981a, b). 

4. Renormalisation in d > 4 dimensions 

In this section we examine the renormalisation of V(p) in d > 4  dimensions. Since 
W ( q ,  x, p )  is extremised by ,yo, po we see that (expressing Y'" as a function of s p 2 )  

2 d W v 2 ) l d ( v 2 )  =xo(v2). (4.1) 
Thus, to construct a renormalised V(4p2) it is sufficient to obtain a renormalised xo(cp2). 
Eliminating po via (3.22) we have 

As an intermediate step we regularise 6(0) and G by imposing an ultraviolet cut-off 
Ik I s A. For simplicity we assume initially that P is independent of A. We define 

S(O).t = J k l  dk 

G(X),,=[ dk(k2+x)-'  

s ,t 

I k I s A  

and, for reasons that will become obvious, 

(4.4) 

(4.5) 

Inserting this expression in (4.3) it follows that x0(cp2) satisfies 

We see that the finite non-zero value of P,  

(4.8) 

(4.9) 

(4.10) 

will have particular significance which we now assess. 
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4.1. The case P #po(d) 

If p f p0(d), on removing the cut-off (i.e. A + CO) we have 

x o ( c p 2 )  = m2Po(Po-P)-’  

where m t  is chosen so that 

(4.11) 

(4.12) 

is finite. 
That is, x0(q2)  is independent of q2,  whence from (4.1) 

V V 2 )  = i x o d  (4.13) 

Thus, a necessary (but not sufficient) condition that we have a non-trivial theory 
corresponding to a trivial theory. 

is that in d dimensions p be fixed at the unique value po(d). 

4.2. The case P = Po(d) 

We need more detail than is present in (4.8), since any non-triviality will be a 
consequence of non-leading ultraviolet behaviour. Non-leading terms are given in 
detail in the appendix. 

4.2.1. d > 6 dimensions, p = Po(d). From the appendix we see that equation (4.3) 
becomes 

(4.14) 
Rewriting this as 

we see that, in order to get a sensible expression as A + CO, we must keep 

m4 = [ mt+ ( s ) A 2 ] A 2  

(4.15) 

(4.16) 

finite in this limit. In consequence ,yo(q2) = m 2  is independent of q2 as A+co.  Yet 
again we get the free-field result 

V ( q 2 )  = t * o q 2 .  (4.17) 

4.2.2. d = 6 dimensions, /3 = $. From the appendix we see that equation (4.3) now 
becomes 

(4.18) 
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We rewrite this as 

x o ( q 2 ) 2  = [ln(ii2/m2) - ~ n ( e ~ , y ~ ( q ~ ) / m ~ ) ]  
(4.19) 

To get a finite ,yo as A +  43 we must vary m i  so that (mi+iA2)A2( ln  A')-' remains 
finite. As before, xo is independent of q2  in this limit to replicate the trivial result 
(4.16). Taking this and the previous result together we conclude that for d 2 6  
dimensions the large-N pseudofree theory is always trivial. 

2 (P2 1 -- - ( m i  + +P)A~ 
h ~ [ i n ( ~ ~ / m ~ )  -1n(e2~o(q2)/m2)]' 

4.2.3. d = 5 dimensions, p = 2. From the appendix we see that there is a qualitative 
difference for d = 5 dimensions in that the second non-leading term in the A series 
expansion of s(O),,/G(x),, is O(A-'), rather than O(A-2). This is crucial for our result. 
From equation (4.3) we now get 

If we vary mi as A + 43 so that 

(4.20) 

(4.21) 

remains finite, equation (4.20) becomes 

= 24(Nh)-'+;-cp2) (4.22) 

q ;  we have a non-trivial pseudofree effective potential, obtained 
as A + m .  

from (4.1) via (4.22) as 
Thus, for q2  

(4.23) 

The minimum of V ( q 2 )  is the symmetric 

Figure 1. The effective potential V(cp*) for the large-N O(N)-invariant pseudofree theory 
in d = 5  dimensions with @ = & ( 5 ) = $ .  V(cp2) is real for cp2s.cpi, complex for cp2>p$. 
For cp2>p: the dotted curve corresponds to Re V(cp2). 
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If we go back to the effective action r[4p2] of (3.15) we find that 

whence the common mass m of the cp fields is 

m = X ~ ( O ) ’ / ~  = (24.rr~pi/AN)”~. 

If we define the coupling strength of the theory by 

we get 

(4.25) 

(4.26) 

(4.27) 

determined by m. We have a theory with non-zero q-rp interaction. 
For 4p2>qi we have to be careful. By ,y3/’, in (4.20), we definitely mean ,y& 

with the positive square root. The real root on the right-hand side of (4.22) is therefore 
ruled out for 4p’>qi. In consequence V(4p2) is complex for 4 p 2 > r p i ,  a situation 
reminiscent of the canonically quantised self-interacting O(N)-invariant AN-’(4p’)2 
theory in d = 5 dimensions in the large-N limit (Rembiesa 1978). We defer any 
further comments on this similarity until § 6. 

We conclude with the observation that, from the above calculations, it seems 
almost accidental that there is a critical value of P for d = 5 ,  and no such values for 
d > 5 .  The reason for this becomes more apparent when we examine the dynamics 
of the interaction later. 

5. Renormalisation in d = 4 dimensions 

For d = 4 space-time dimensions the expression (4.9) for Po(d) is invalid but it is 
straightforward to see that there is no non-zero critical value of P in the A + CO limit. 
Unlike the case of d > 4  dimensions we shall need to renormalise p if we are to get 
a non-trivial theory. In so far as we can interpret P as a coupling constant in (3.4) 
this is not unexpected. 

X O ( C P ~ )  = m i + T P d A 2 - ~ o ( ~ 2 )  l n ( ~ o ( c p ~ ) / A ~ ) I - 8 . r r ~ P . , ( 4 p ~ / A N ) + 0 ( A - ~ )  (5.1) 
where we have anticipated by the suffix A that PA needs to be regularised in a 
A-dependent way. 

We see that, if P +Po f 0 as A + 43, ,y0(cp2) will be independent of 4p2 and we will 
have a trivial theory. Let us assume that, for some b and M 2 ,  we can parametrise 
PA as 

Equation (4.3) now becomes (see appendix) 

P A W  = [b/ln(A’/M2)1; (5 .2 )  
then 

(5.3) 
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For general values of b we will continue to have a trivial theory. However, for 

(5.4) 

the case b = 2 equation (5.3) becomes 

0 = (m: ln (Az/Mz)+Az)-~o(qz)  ln(,yo(cpz)/Mz)- 1 6 n 2 ( q 2 / h N ) + 0 ( A - 2 ) .  

Thus, keeping 

pz = m: ln(i4z/M2) + A z  ( 5 . 5 )  

finite as A + 00 we get 

x0(qz2) I n l y ~ ( q ~ ) / M ~ ] +  16tr2(cpZ/hN) = p i .  (5.6) 

That is, ,yo depends on q2 and we have a non-trivial pseudofree theory. At first 
this seems a little strange since, from (5.2), we see that 

PCC=O (5.7) 

whereas if we had set P = 0 initially in (3.2) we would have had a free theory. There 
is no dichotomy. This is an example of discontinuous perturbations in which the 'hard 
core' weeds out configuration histories throughout the regularisation procedure?. 
Arguments are presented by Klauder (1981a) for p being suitably zero in d = 4 
dimensions. 

In figure 2 we display equation (5.6) schematically. As in the case of d = 5 
dimensions discussed previously we have a value cpi > 0 such that V(cpz) is complex 
for cpz >cp& If xC is the value of ,y at which cpz = qi then 

xc = MZe-' 
whence 

Furthermore, we see that V(cp2) is real and double-valued for 

hNp 1 6 n  s cp s cp p 2 > 0  (5.10) 

OSq*Scp; p 2 2 0 .  (5.11) 

Figure 2. The relationship between xo(cp2) and cp2/N for d = 4  dimensions with a 
regularised p,, = 2(In A2/M2) - ' .  

+ A similar situation occurs in the quantum mechanics of singular potentials (Klauder 1979). 
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In figure 3 we display V"(q2) schematically for k 2 < 0 .  The lower (upper) branch 
corresponds to x >xc (,y <xC). The physical branch is expected to be the lowerf. The 
situation is remarkably like the large-N limit of the canonical A N - ' ( v ~ ) ~  theory in 
d = 4 dimensions (Kobayashi and Kugo 1975, Abbott el a1 1976). 

t 

Figure 3. The effective potential Y(cp2) for the large-N OW)-invariant pseudofree theory 
in d = 4 dimensions with p as in figure 2 and pi<O.  The branches I and I1 are identified 
with the segments of ,yo(cp2) in figure 2 that are similarly labelled. Y(cp2) is complex for 
cp2>Qi. 

Let us now consider the coupling strength A ,  of the theory. On the physical branch 
we have 

(5.12) 

non-zero and negative as in five dimensions. 
The above is reminiscent of the canonical quantisation of a self-interacting Ao((02)2  

theory in d = 4 dimensions in the large-N limit (Kobayashi and Kugo 1975, Abbott 
et a1 1976). To see that the two formalisms are, in fact, identical we shall recapitulate 
the large-N limit of the O(N)-invariant theory with (Euclidean) Lagrangian density 

(5.13) 

We require both mass and coupling constant renormalisation. We define finite p 2  

3 = - i(vcp)' - im h2 - ( A ~ / ~ ! N ) ( V ~ ) ~  

when quantised canonically (i.e. with /3 

and g by (Abbott et a1 1976) 

0). 

1 1  dk 

If we take p + 00, g + 03 in such a way that 
2 2 - 1 =  2 967  p g - P O  

(5.14) 

(5.15) 

f We note that for gt>O the upper branch (5.10) corresponds to a spontaneous breaking of the symmetry 
to O(N - 1). 
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the effective potential Vc(cp2) for the canonically quantised theory (5.13) becomes 
identical to the effective potential ‘V(cp2) for the non-canonically quantised pseudofree 
theory, obtained from ( 3 . l ) t .  

That is, when P is tuned as (5.2) (with b = 2) so as to give a non-trivial theory 
the hard-core effect of the change of measure (after renormalisation) is just that of a 
~ ~ ( c p ’ ) ’  interaction (again after renormalisation) 

With this increased understanding we now return to the d > 4  dimensional case 
of § 4 .  

6. The case d > 4 revisited 

The previous section has shown the importance of regularising P in the cut-off theory. 
In § 4 we had neglected such a possibility. We now relax this condition, taking PA 
to have a A dependence in d > 4 dimensions so that 

We see immediately that, if P # Po(d) in d dimensions, the large-N pseudofree theory 
in d dimensions remains free. Thus, we can only hope to have a non-trivial pseudofree 
theory provided 

Even this will not enable us to get a non-trivial theory for d > 5 dimensions. If, for 
example, for d > 6 dimensions we take 

P.1 =Po(d)[l+ (M/A)”I CY > O  (6.3) 

where M is an arbitrary mass scale, equation (4.14) is replaced by 

For all a, xo(cp2) remains constant as before, because of the dominance of the A 
behaviour of the second term over the third term on the right-hand side of (6.4). 

Although the presence of logarithms slightly complicates the case d = 6 dimensions, 
we are equally unable to obtain non-trivial results in this case. 

However, for d = 5 dimensions the situation is different. If we take 

P.4 = ;[I+ ( M / A ) ]  

equation (4.20) is replaced by 

M 2 1 2  77 12.rr3 c p 2  
- -xo(cp’)  = (mo+sA + ~ M A ) - - ~ 0 ( ~ 2 ) 3 ’ 2 - -  

A 212 A h N  

+ It is sufficient to establish the identity of x o ( ( p 2 )  for the two cases, since aV/a((p2) = tx,,. The reader is 
referred to Abbott et a1 (1976) for more details. 
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Rewriting this as 

where g, k 2  are such that g + 00, p 2  + 43 with 

(m: + $A2 + +MA) 
A - -- _ -  c L 2  

g 2 4 r 3  

(6.7) 

finite, we see that we recover the general case of the canonical Ao(cp2)2 large-N theory 
in d = 5 dimensions (Rembiesa 1978). This has a more complicated structure than 
the d = 4 case, and we refer the reader to Rembiesa for further details. 

We merely note that, for both d = 5 and d = 4 dimensions, the quantities k2/g  of 
(5.15) and (6.8) have the same renormalisation-invariant definition (5.14) in terms of 
the bare parameters of the canonical theory. The quantity g is, however, nor renormali- 
sation invariant and hence the fact that the correspondence between the non-canonical 
pseudofree theory and the canonical A ( ( P ~ ) ~  theory occurs at g + 00 in each case has 
no significance. 

The fact that it is not possible to construct a non-trivial large-N renormalised 
O(N)-invariant Ao((p2)’  theory in d 3 6 dimensions (which follows immediately from 
(5.14)) is the counterpart to our inability to construct a large-N non-trivial pseudofree 
theory in the same dimensions. 

Finally, we observe that, as a large-N result, the equivnlence between the non- 
canonical pseudofree theory and the canonical interacting theory (when they both 
exist) is essentially an equivalence of the most singular parts of the ‘hard core’ of the 
non-canonical theory and the self-interaction of the interacting canonical theory 
(Ebbutt and Rivers 1982b). Without examining the non-leading terms in detail, we 
do not know whether the less singular parts of the ‘hard core’ and the self-interaction 
are identical (i.e. whether the non-leading terms in the 1/N expansion agree). 

7. Dynamics in d 3 4 dimensions 

Although the effective potential can determine the non-triviality of a pseudofree 
theory, to understand the nature of the Q self-interactions we must go back.to the 
effective action r[q] of § 3, since it is r that contains the dynamics of the theory. 

It is most convenient to work with the more general r[q, x, p ]  of (3.16), in which 
cp, x, p are taken to be independent fields. The momentum-space matrix of inverse 
propagators, evaluated at the extremum cp = 0, x = x0(0)  = m 2 ,  p =po(0),  has the form 

where D,, is the 2 x 2 matrix (first row x, second row p )  

with 

(7.1) 

(7.2) 

B ( k 2 , m 2 ) =  d p [ ( k  - p ) 2 + m 2 ] - ’ ( p 2 + m 2 ) - ’ .  (7.3) 
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From (6.2) we see that the x, p propagators are 0(1/N), whereas the p-x mixing 
vertex is O ( N ) .  Since the cpi fields only interact directly with the x field via a Yukawa 
interaction we see that the leading contribution to the q x p  interaction is given by the 
Born diagrams of figure 4t .  

>----- <+ + . +  x 9  x ..... 

Figure 4. The Born diagrams contributing to (p-q scattering in the large-N limit. Full 
lines denote external cp fields or internal p fields, wavy lines ,y fields, and the double line 
the diagonalised x '  field. 

On summing these diagrams we see that the (p-q interaction takes place via the 
exchange of an O ( N )  scalar field (x', say) with propagator 

(7.4) 

In d > 4  dimensions, for which B ( k 2 = 0 ,  mZ=O)* of (6.3) exists and is equal to 
B ( m 2  = O),, of (4.6), we can write the ultraviolet cut-off X I  propagator as 

where we have used (4.10). For simplicity we have again assumed that p is independent 
of A. 

We now understand the role of Po(d). If p # Po(d) 

That is, the X I  necessarily vanishes. 
If p = po(d) we have a more complicated situation with 

On expanding G(m2) , ,  as in (4.7) we see that 

DX,(k2)* = 
2N-' 

[B(O, o),, - B ( k 2 ,  m2)A] - 2m2B(0, O):G(0)i1[1 + 0(K2)]* 

(7.7) 

(7.8) 

+The only other interactions present in (3.16) are ,y self-interactions of order N, and p self-interactions 
of the same order. These give no contributions to leading order. 
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As we vary d we find the following. 
(i) d > 6  dimensions (@ =@o(d)). In this case B ( k 2 ,  m 2 )  = O(Ad-4), whence 

[B (0,  o),, - B ( k 2 ,  m 2 ) . ~ 1  = o ( A ~ - ~ )  (7.9) 

diverges as A + CO, as does 

B(0,  O);G(0),2' = O(Ad-6) (7.10) 

with similar behaviour. Thus choosing @ = p o ( d )  does not stop the x' field vanishing, 
with D,.(kz),, = O(Ad-6). 

(ii) d = 6 dimensions (@ = 2). The x' propagator still vanishes for @ = Po(d) ,  albeit 
as an inverse logarithm. 

(iii) d = 5 dimensions (p E$). For this dimension [B(O, O ) n - B ( k 2 ,  m2)J  is finite 
whence, as A + 00, we have 

2N-' 
B(O,  o ) - B ( ~ ' ,  m 2 ) '  

D x ( k 2 )  = (7.11) 

that is, the x f  does not vanish in this case, but propagates. The properties of ,y' are 
obtained from ( k 2  = -s -4m2) 

(7.12) 

whence 

(7.13) 

For s <4m2 we see that both terms in (6.13) are positive and hence DJ-s)  has 
no pole below the elastic (p-(p threshold. For s > 4m2 equation (6.14) gives 

(7.14) 

whence Re D,.(-s)-' C 0 for large s. Thus, we have a two+ resonance whose mass 
Mx, satisfies the equation 

(7.15) 

with solution 

x > l  rx,+2q > 0. (7.16) 
How would the situation change if we allowed p to vary with A? (It follows 

immediately that there is no change for d > 5 dimensions.) If we choose @,, as in (6.5) 
we find that 

2N--'  
(7.17) 

As M varies x f  no longer need be a resonance but can become a bound state. The 
details are uninteresting and again the reader is referred to Rembiesa for details. 

D,(k2)  = 
D ( O ,  0) ,2-B(k2,  m 2 ) * 1 - ( ~ / N ~ ( 0 ,  O ) A *  
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(iv) d = 4 dimensions. Since B(0,O) is infrared divergent in d = 4 dimensions we 
need to modify our formulae. Introducing 

B'(M'),,= J d k ( k 2 ) - ' ( k 2 + M 2 ) - '  
I k I s A  

via 

G(M2),\ = G(0),\-M2B'(M2),, 

we see that 

P A W )  = [2/ln(A2/M2)1 

(the relevant p,, of 9 5) satisfies 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

Reverting to (7.4) it is straightforward to see that, if p # p A ( M )  for some M, 
~ , , ( k ' ) , ,  = O[(h A2)-'] to give a trivial theory. However, if we take 0 = P A ( M )  we 
find that 

Using (7.20) it follows that, as A + 00, 

2N-'  
B'(M2)  - B ( k  2, m 2, ' 

D,,(k2) = 

(7.22) 

(7.23) 

a non-zero propagator showing the persistence of x' .  
On evaluating B ( k Z ,  mZ) (Abbott er a1 1976) we find ( k 2  = -s 3 -4m') 

(7.24) 
N 

16.n D ~ , ( - S ) - '  = y[+ ln(m2/xc) + ( f ( - s ,  m 2 ) - f ( 0 ,  m2))] 

where xc = M'e-' was introduced in (5.7), and 

2m 
Since 

0 s [ f ( k 2 ,  m2)- f (0 ,  m2)]<00 O S k 2 < 0 0  

(7.25) 

(7.26) 

tachyons will be absent from D,,(-s) if 

m = ,yo(q2 = 0) >xC. (7.27) 

This is true for the global ground state on branch I of Y(q2)  (see figures 2 and 3). 
Restricting ourselves to this state there are two possibilities. 

(a) If mz <ezx,= eM2,  Re D,,(-s)-' has two zeros. One of these zeros corre- 
sponds to a bound state (denoted by with M,; < 2m) and the other corresponds to 
an unstable resonance (denoted xi, mass M,; >2m). In this case we can choose the 
cp-mass m and the bound-state mass M,; (or M,; ) as the two independent parameters 
determining the pseudofree theory. Given m each value of Mxi gives a different theory, 
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(b)  If m 2  > e2Xc = eM2 there is no bound state or resonance and the x’ system has 
no simple interpretation. The pseudofree theory is now determined uniquely by the 
choice of m and M. 

8. Summary and interpretation 

We have examined the large-N limit of O(N)-invariant pseudofree theories, labelled 
by a single (bare) parameter /3,, that characterises the scale-covariant measure of the 
momentum cut-off regularised theory for which (k 1s A. For general values of /3 we 
expect the large-N pseudofree theory to be a free theory. 

In detail, we find, if /3,, + /3 as A + CO, the following. 
(i) We have a free theory for all values of /3 in d 3 6 space-time dimensions. 
(ii) We have a free theory in d = 5 space-time dimensions for all /3 # 5. For p = g 

we have a non-trivial theory. If PA = $(l + M A - ’ )  we have a different theory for each 
M. We understand this in the following way. For general values of /3 two cp’s pass 
through one another without interaction. However, as we tune /3 to the value $, the 
two-cp system resonates to produce a bound-state or resonant O ( N )  scalar that we 
have called x’. The properties of x‘ are uniquely given by the cp mass. It is the 
exchange of x’  that provides the non-zero cp-cp interaction. The theory is determined 
uniquely on specifying the cp and x’ masses. 

(iii) We have a free theory in d = 4 dimensions for all /3 # 0. However, it is possible 
to choose @,, # 0 so as to get a non-trivial theory as A + CO. In particular, we must take 

5 

P’,(M) = [2/ln(A2/M2)1 (8.1) 
where M is an arbitrary mass scale. 

Although pi\ + 0 as A + CO the pseudofree theory is not related to the free theory 
for which /3 = 0 at all stages. The change of measure in the regularised theory is 
sufficient to enforce a discontinuous perturbation. Dynamically, what now happens 
is that the cp-cp system can simultaneously form a bound state, denoted x i ,  and a 
resonance where p,, is given by (6.1). We can interchange M and M,; as arbitrary 
parameters. Thus, given m, we have a single-parameter family of (different) pseudofree 
theories labelled by the bound-state mass M, ;. 

The cp-cp interaction then arises from the interchange of this bound-state-resonance 
complex. (It is also possible, when /3,, is given by (6.1) for the two-cp fields to generate 
a non-resonant (or bound-state) system that can give cp-cp forces. The properties of 
this are completely determined by M.) 

(iv) Whenever the large-Nnon-canonical pseudofree theory in d = 4 ,5  dimensions 
is non-trivial it is identical to the large-N canonically quantised Ao((p2)2 theory. In 
so far as the large-N limit identifies the most singular part of the ‘hard-core’ interaction 
due to the change of measure (Ebbutt and Rivers 1982b) this shows that the most 
singular part of the non-canonical ‘hard core’ is equivalent to a ‘canonical’ A o ( q 2 ) 2  
self-interaction, once renormalisation has been effected. Furthermore, the fact that 
the large-N limit in d = 4 , 5  dimensions always has a symmetric vacuum shows that 
the pseudofree theory has a symmetric vacuum. This is anticipated by the nature of 
the change of measure with its origin in the unitary implementation of field scale 
transformations, and the non-unitary implementation of field translations. 

Our first comment concerns the change of measure that non-canonical quantisation 
implies. As we mentioned earlier, an arbitrary change of measure would not lead to 
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a consistent quantisation procedure. Despite the fact that a scale-covariant measure 
corresponds to perfectly acceptable (affine) commutation relations it is not obvious, 
a priori, that this is enough. In particular, our ability to construct a unitary theory is 
intimately related to the choice of measure. It follows from (6.11) and (6.23) that 
the large-N limit maintains unitarity (which, in this case, is essentially two-particle 
unitarity). This is because, after removing the cut-off, the x’  propagator (when it is 
non-trivial) is nothing more than a geometrical sum of (o ‘bubbles’. Two-particle 
unitarity, automatically satisfied by such series (Zachariasen 1961), is all, given that 
the large-N limit is a ‘tree’ theory of cp’s and X I ’ S .  Moreover, from this viewpoint, we 
can anticipate how non-leading terms in a 1/N expansion would preserve unitarity. 
Similar arguments could be constructed for cluster decomposition. 

The next general comment that we make is that our previous analysis (Ebbutt and 
Rivers 1982c) of the large-N pseudofree theory for d < 4  dimensions is unchanged. 
That is, the only consistent pseudofree theory for d < 4  dimensions is a free theory 
with P = O .  That is, non-canonical quantisation is only appropriate for those 
dimensions for which canonical quantisation is over-restrictive in forcing the theory 
to be trivial. This is in accord with the heuristic argument of Klauder (1979), which 
used the Sobolev inequalities to suggest that the canonical translation-invariant 
measure be preserved for d < 4 dimensions. 

Our third observation concerns the high-temperature expansions of Klauder 
(1981a, b). Arguments were presented there that we should expect Po> 0 for d > 4  
dimensions and, in some sense, Po = 0 in d = 4 dimensions. Our results agree with 
these conclusions for d = 5 , 4  dimensions. However, we note that in d = 4 dimensions 
we not only needed P + O  but also that PA was exactly as in (6.1) (e.g. PA = 
2.5(ln A2/M2)-’  gives a trivial theory). This suggests that it may be very difficult to 
perform accurate numerical analysis in d = 4 dimensions. 

Fourthly, we stress that the existence of non-trivial pseudofree theories in the 
large-N limit does not, in itself, do anything to prove the existence of non-trivial 
scalar theories in d > 4  dimensions. What we are saying here is that, in so far as 
non-trivial non-canonical scalar theories exist, they will need a functional measure 
that we expect to be mimicked well by the measures given here. The case for this is 
the following (Klauder 1981a). We are reminded that the existence of non-trivial 
canonical scalar theories in these dimensions is prevented by the coincidence of zero 
upper and lower bounds on the suitably defined connected four-point function. For 
the precontinuous scale-covariant lattice theory Klauder has argued that the upper 
bound, the Lebowitz (1974) inequality (where the suffix c denotes the connected part) 

((oi(o,qk(ol)c 0 (8.2) 
of canonical theory no longer holds. For example, the single-site (o-field moments 
satisfy (Klauder 1981a) 

( (04)ci((02)2=~(1 - P ) - ’ > o  o<p<1 .  (8.3) 
With the Lebowitz bound lifted, there is no known reason to prevent non-trivial scalar 
theories. If non-trivial theories do exist as a consequence of scale-covariant quantisa- 
tion, it must be because they are based upon non-trivial pseudofree theories. For the 
reasons indicated earlier, this requires a (o-(o force to appear once p is correctly tuned. 
The mechanism we have described above, in which this force is (usually) a consequence 
of bound-state/resonance formation peculiar to these values of p ,  must be a recognis- 
able caricature of the true dynamics. 
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Nonetheless, we conclude with a cautionary note. Although the dynamics of the 
q-q interaction (when there is any) is described by bound states and resonances with 
no tachyons or ghosts visible, the effective potentials Y(4pz) of figures 1 and 3 may 
have some pathologies for finite N. For example, in d = 5 dimensions ‘V(4p’) of (4.21) 
is such that Re  Y(4p’) becomes arbitrarily large and negative as 4pZ+ 00. If tunnelling 
is able to render the 9’ = 0 vacuum unstable for N C 00 the tunnelling amplitude will 
be O(exp- N ) .  Although this may not matter numerically for large finite N it does 
matter in principle. The situation for the analogous O(N)-invariant N-lA (q’)’ theory 
has been looked at in some detail (Linde 1976, Cant 1979, Salomonson 1982). 
Although not understood completely, it would not be surprising if tunnelling did 
occur for this case, with the implication that the pseudofree theories presented here, 
if taken literally, would also suffer. (The proviso is that the tunnelling mechanism is 
via very non-classical instantons whose properties are not understood.) Even if this 
is the case we are not too deterred. 

We draw an analogy with mean-field theory in statistical physics, to which the 1/N 
expansion has some similarity. Whereas the mean-field expansion can give a good 
approximation to the critical temperature (i.e. the critical coupling constant) but be 
in error over the nature of the transition we expect the 1/N expansion to give a good 
approximation to the critical value of p (itself a coupling constant) despite getting 
some global properties of Y(4p’) wrong. The compatibility of our results to those of 
Klauder (1981a) encourages this view. 

There are two obvious next steps. Firstly, we need to reanalyse the scale-covariant 
quantisation of a classically self-interacting scalar theory for the critical values of p 
discussed here. The general result (p # po(d))  was given by Ebbutt and Rivers (1982d). 
Secondly, we must check the stability of our results under the inclusion of non-leading 
terms in the 1/N expansion. Both of these problems are under active consideration 
and the results will be published elsewhere. 

Appendix. Basic formulae 

Let 
1 1 2.rrdl2 

Sd = -zoJd = - - 
(2.rr) (2.rrId W / 2 )  

where wd denotes the surface area of the unit hypersphere in d dimensions. 

A.  1. d > 6 space-time dimensions 

A.2. d = 6 space-time dimensions 

S(O),JGCy)., = $A2+:* +$,yZA-* ln(ezX/Az) + O(K~)  

~ ( O ) , , / G C ~ ) ;  = ; S ~ ’ A - ~ +  o ( A - ~ ) .  
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A.3. d = 5 space-time dimensions 

S(O)A/G(X), = $A' +& - & T A - ' ~ ~ ' ~  + o ( A - ~ )  

s ( o ) , , / G ~ ) ~  = 3s;' A - ~  + o ( A - ~ )  = yT3~- l  + o ( A - ~ ) .  

(A6) 

(A71 

A.4. d = 4 space-time dimensions 

S(0).4/G(y), ,=kA2-i~ ln(X/A')+O(A.*) 

Unless specifically stated, logarithmic divergences are ignored in expressions O(A"). 
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